Search results for "data streams"

showing 6 items of 6 documents

On the Classification of Dynamical Data Streams Using Novel “Anti–Bayesian” Techniques

2018

The classification of dynamical data streams is among the most complex problems encountered in classification. This is, firstly, because the distribution of the data streams is non-stationary, and it changes without any prior “warning”. Secondly, the manner in which it changes is also unknown. Thirdly, and more interestingly, the model operates with the assumption that the correct classes of previously-classified patterns become available at a juncture after their appearance. This paper pioneers the use of unreported novel schemes that can classify such dynamical data streams by invoking the recently-introduced “Anti- Bayesian” (AB) techniques. Contrary to the Bayesian paradigm, that compar…

Anti-Bayesian classificationData streams
researchProduct

Managing sensor data streams in a smart home application

2020

A challenge in developing an ambient activity recognition system for use in elder care is finding a balance between the sophistication of the system and a cost structure that fits within the budgets of public and private sector healthcare organisations. Much activity recognition research in the context of elder care is based on dense networks of sensors and advanced methods, such as supervised machine learning algorithms. This paper presents the data processing aspects of an activity recognition system based on a simpler, knowledge-based unsupervised approach, designed for a sparse network of sensors. By structuring sensor data management as a streaming system, we provide a simple programmi…

Computer sciencesmart homeComputer Networks and CommunicationsData managementsensor data streamskotihoitoContext (language use)sensor data processing02 engineering and technology01 natural sciencesActivity recognitionwireless sensor networkHome automationälytalotpassive infrared sensor0202 electrical engineering electronic engineering information engineeringactivity recognitionanturitElectrical and Electronic EngineeringgeroteknologiaData stream miningbusiness.industry010401 analytical chemistryPublic sectorsensoriverkothealthcare020206 networking & telecommunicationsData sciencesensor data managementWSNsensor data0104 chemical sciencesComputer Science ApplicationsPIRControl and Systems EngineeringProgramming paradigmälytekniikkabusinesshome careWireless sensor networkInternational Journal of Sensor Networks
researchProduct

New results for finding common neighborhoods in massive graphs in the data stream model

2008

AbstractWe consider the problem of finding pairs of vertices that share large common neighborhoods in massive graphs. We give lower bounds for randomized, two-sided error algorithms that solve this problem in the data-stream model of computation. Our results correct and improve those of Buchsbaum, Giancarlo, and Westbrook [On finding common neighborhoods in massive graphs, Theoretical Computer Science, 299 (1–3) 707–718 (2004)]

Data streamDiscrete mathematicsGeneral Computer ScienceExtremal graph theorySpace lower boundsModel of computationCommunication complexityGraph theoryUpper and lower boundsTheoretical Computer ScienceExtremal graph theoryCombinatoricsGraph algorithms for data streamsAlgorithms Theoretical Computer SciencedGraph algorithmsCommunication complexityComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

A critical review on the implementation of static data sampling techniques to detect network attacks

2021

International audience; Given that the Internet traffic speed and volume are growing at a rapid pace, monitoring the network in a real-time manner has introduced several issues in terms of computing and storage capabilities. Fast processing of traffic data and early warnings on the detected attacks are required while maintaining a single pass over the traffic measurements. To palliate these problems, one can reduce the amount of traffic to be processed by using a sampling technique and detect the attacks based on the sampled traffic. Different parameters have an impact on the efficiency of this process, mainly, the applied sampling policy and sampling ratio. In this paper, we investigate th…

General Computer ScienceComputer science020209 energyReal-time computingintrusion detection system (IDS)data streamsContext (language use)02 engineering and technologyIntrusion detection system[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]Data sampling[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]statistical analysisSampling process0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceStatic dataGeneral EngineeringVolume (computing)Process (computing)Sampling (statistics)Internet traffic[INFO.INFO-MO]Computer Science [cs]/Modeling and SimulationTK1-9971[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]020201 artificial intelligence & image processing[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]Electrical engineering. Electronics. Nuclear engineering[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]
researchProduct

Mining Maximal Frequent Patterns in Transactional Databases and Dynamic Data Streams: A Spark-based Approach

2018

Mining maximal frequent patterns (MFPs) in transactional databases (TDBs) and dynamic data streams (DDSs) is substantially important for business intelligence. MFPs, as the smallest set of patterns, help to reveal customers’ purchase rules and market basket analysis (MBA). Although, numerous studies have been carried out in this area, most of them extend the main-memory based Apriori or FP-growth algorithms. Therefore, these approaches are not only unscalable but also lack parallelism. Consequently, ever increasing big data sources requirements cannot be met. In addition, mining performance in some existing approaches degrade drastically due to the presence of null transactions. We, therefo…

dynamic data streamsprime number theorybig datatransactional databasesnull transactionsapache sparkmaximal frequent patternstiedonlouhinta
researchProduct

Modelling Recurrent Events for Improving Online Change Detection

2016

The task of online change point detection in sensor data streams is often complicated due to presence of noise that can be mistaken for real changes and therefore affecting performance of change detectors. Most of the existing change detection methods assume that changes are independent from each other and occur at random in time. In this paper we study how performance of detectors can be improved in case of recurrent changes. We analytically demonstrate under which conditions and for how long recurrence information is useful for improving the detection accuracy. We propose a simple computationally efficient message passing procedure for calculating a predictive probability distribution of …

ta113noiseComputer scienceData stream miningMessage passingDetectordata streamsonline change detection02 engineering and technologycomputer.software_genreTask (computing)recurrent eventschange points020204 information systems0202 electrical engineering electronic engineering information engineeringProbability distribution020201 artificial intelligence & image processingNoise (video)Data miningBaseline (configuration management)computerChange detectionProceedings of the 2016 SIAM International Conference on Data Mining
researchProduct